\(\int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [131]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 133 \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-1/8*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)+1/4*I/a^2/d/(a+I*a*tan(d*x+c))^
(1/2)+1/5*I/d/(a+I*a*tan(d*x+c))^(5/2)+1/6*I/a/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {3560, 3561, 212} \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {i}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{5 d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Int[(a + I*a*Tan[c + d*x])^(-5/2),x]

[Out]

((-1/4*I)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*a^(5/2)*d) + (I/5)/(d*(a + I*a*Tan[c
 + d*x])^(5/2)) + (I/6)/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) + (I/4)/(a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3560

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a + b*Tan[c + d*x])^n/(2*b*d*n)), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {\int \frac {1}{(a+i a \tan (c+d x))^{3/2}} \, dx}{2 a} \\ & = \frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {\int \frac {1}{\sqrt {a+i a \tan (c+d x)}} \, dx}{4 a^2} \\ & = \frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \sqrt {a+i a \tan (c+d x)} \, dx}{8 a^3} \\ & = \frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {i \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{4 a^2 d} \\ & = -\frac {i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {i}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.18 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.38 \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {i \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{5 d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Integrate[(a + I*a*Tan[c + d*x])^(-5/2),x]

[Out]

((I/5)*Hypergeometric2F1[-5/2, 1, -3/2, (1 + I*Tan[c + d*x])/2])/(d*(a + I*a*Tan[c + d*x])^(5/2))

Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {2 i a \left (-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{16 a^{\frac {7}{2}}}+\frac {1}{8 a^{3} \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {1}{12 a^{2} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {1}{10 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {5}{2}}}\right )}{d}\) \(97\)
default \(\frac {2 i a \left (-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{16 a^{\frac {7}{2}}}+\frac {1}{8 a^{3} \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {1}{12 a^{2} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {1}{10 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {5}{2}}}\right )}{d}\) \(97\)

[In]

int(1/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2*I/d*a*(-1/16/a^(7/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))+1/8/a^3/(a+I*a*tan(d*x+c)
)^(1/2)+1/12/a^2/(a+I*a*tan(d*x+c))^(3/2)+1/10/a/(a+I*a*tan(d*x+c))^(5/2))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 283 vs. \(2 (94) = 188\).

Time = 0.26 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.13 \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {{\left (-15 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 15 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (23 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 34 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 14 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

[In]

integrate(1/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(-15*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x
+ 2*I*c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) +
 15*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x + 2*I*
c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqrt(
2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(23*I*e^(6*I*d*x + 6*I*c) + 34*I*e^(4*I*d*x + 4*I*c) + 14*I*e^(2*I*d*x +
2*I*c) + 3*I))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {1}{\left (i a \tan {\left (c + d x \right )} + a\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(1/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral((I*a*tan(c + d*x) + a)**(-5/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.89 \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {i \, {\left (\frac {15 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{a^{\frac {3}{2}}} + \frac {4 \, {\left (15 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} + 10 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 12 \, a^{2}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} a}\right )}}{240 \, a d} \]

[In]

integrate(1/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/240*I*(15*sqrt(2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x +
c) + a)))/a^(3/2) + 4*(15*(I*a*tan(d*x + c) + a)^2 + 10*(I*a*tan(d*x + c) + a)*a + 12*a^2)/((I*a*tan(d*x + c)
+ a)^(5/2)*a))/(a*d)

Giac [F]

\[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(-5/2), x)

Mupad [B] (verification not implemented)

Time = 4.71 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.80 \[ \int \frac {1}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\frac {1{}\mathrm {i}}{5\,d}+\frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2\,1{}\mathrm {i}}{4\,a^2\,d}+\frac {\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{6\,a\,d}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}+\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{8\,{\left (-a\right )}^{5/2}\,d} \]

[In]

int(1/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

(1i/(5*d) + ((a + a*tan(c + d*x)*1i)^2*1i)/(4*a^2*d) + ((a + a*tan(c + d*x)*1i)*1i)/(6*a*d))/(a + a*tan(c + d*
x)*1i)^(5/2) + (2^(1/2)*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/(8*(-a)^(5/2)*d)